

MSc. Christiaan Bartels

09.03.2019, Vereniging voor ZonnekrachtCentrales, Gouda

Contents

- R&D Objectives
- Parabolic Trough Technology with
- Alternative Heat Transfer Fluid
- Alternative Trough Collector
- Solar Tower Technology with:
- Alternative Heat Transfer Medium
- Alternative Heliostat Field design
- Alternative Thermal Energy Storage System

Research & Development Objectives

- Cost reduction (LCOE)
- Expansion of the location possibilities
- Electricity generation around the clock
- Expansion of uses

SITEF: A public funded project (SOLAR-ERA.NET) at Plataforma Solar Almeria

Proof of Concept / Qualification of HELISOL® 5A at 425°C and beyond

by courtesy of CIEMAT

EPC,	Component	Ownership,	Certifier
CSP-Developer	Suppliers	operation	
Engineering /Upgrade: • TSK-Flagsol FS, • CIEMAT CI, • TÜV-Nord TN, • DLR	REPAS: Senior Flexonics SF Receiver: Rioglass HTF: Wacker WA	CIEMAT CI	 Lab analysis: DLR techno-economic evaluation: DLR, FS Risk evaluation: TN, DLR, FS, WA external evaluation: RWE

SITEF project is funded by the governments of Spain and Germany

Source: www.dlr.de

SITEF Objectives

- Demonstrate functionality and practicality of Silicone heat transfer oil HELISOL[®] in interaction with parabolic trough collector operating temperatures up to 450 °C
- Significant increase operating temperature enables significant increase overall power plant efficiency
- SITEF links seamlessly to the previous project SI-HTF, whose activity with experimental durability tests on a laboratory scale demonstrated the suitability of HELISOL® for use in parabolic trough power plants
- Additionally SITEF houses the development, deployment and demonstration of necessary and specially adapted receiver tubes from SCHOTT and REPAs of Senior Flexonics to be used with silicone heat transfer fluids
- Subsequently: Operation and Maintenance (SIMON) project; Timeline: Oct. 2017 – Sept. 2019

Differences between HELISOL® 5A and BP/DPO

BP/DPO eutectic mixture

 25-28% BP, 72-75% DPO (Diphyl, Dowtherm A, Therminol VP1)

Working temp.: 60 to 400 °C
 Freeze Point: 12 °C → freeze protection

Source: www.dlr.de

HELISOL® 5A

 HELISOL[®] 5A is a low viscosity polydimethylsiloxane, a multi-component mixture of molecules with various molecular weights

Working temp.: -40 to 425 °C Freeze Point: -65°C

LCOE – Levelized Cost of Energy

- No Ullage system needed for viscosity control
- No freeze protection
- Higher vapor pressure

- No recirculation for freeze protection
- Easier maintenance
- Less pump energy (low viscosity)
- Shorter start up period
- Lower degradation/exchange rate @ same temp.
- Lower H2 generation
- No fouling

LCOE – CSP vs PV

HELISOL® 5A enables LCOE reduction of ~ 5%

Source: www.dlr.de

Restrictions:

- Calculation is based on LCOE calculation in Guadix (E).
- Solarfield- and storage size are based on minimal LCOE.
- Specific solarfield costs are higher...
- Specific costs of the TES are lower...

Conclusion:

- HELISOL[®] 5A offers advantages over commonly used HTF's
- in terms of applicability for HELISOL[®] 5A in CSP plants no hindering issues were found

HPS2 (High Performance Solar 2) - Évora, Portugal

- Build and operate test Facility of a parabolic trough collector loop
- Molten salt (mix: 60% NaNO3 40% KNO3) instead of thermal oil
- Reduce the levelized electricity costs
- International consortium led by the DLR Institute of Solar Research
- Consortium: TSK Flagsol, Eltherm, Yara, Steinmüller Engineering, South African Energy Provider Eskom and University of Évora

Source: www.sencener.com

HPS2 – Why molten salt?

• Cost reduction – reduction of LCOE

HelioTrough® Parabolic Trough Collector

- Cost reduction by
 - Increasing efficiency and size
 - Reducing number of parts (mirrors, HCEs, steel parts, drives, swivel joints, control systems etc.)
 - Reduction assembly and alignment costs
 - Reduction Maintenance Costs
 - Increasing Lifetime

Source: http://www.heliotrough.com

Heliotrough - Summary

- HelioTrough technology ~ 20 % less expensive
- Levelized Cost of Electricity ~ 10 % lower
- Prototype erection, assembly concept and optical accuracy validated
- Since 2009, HelioTrough collectors installed and continuously operated at Kramer Junction (USA) for testing and demonstration purposes
- Results show high expected performance
- Annual efficiency increased: 48 % vs 44 % SKAL ET collector
- Technology ready for commercial application

Capture: Solar Tower Project at Plataforma Solar Almeria, Spain

Source: http://capture-solar-energy.eu/

Capture: Objectives

- Reduce costs of CSP, in order to pave the way for its deserved competitiveness on the power market
- Increase plant efficiencies
- Reduce LCOE by developing all relevant components that allow implementing an innovative plant configuration
- Development of advanced power cycles and thermal storage integration: combined cycles with air or CO2 as primary fluid with T > 1000 °C

Capture: Administrative Details

- Project financed by EUREC (European Renewable Energy Research Centres)
- Part of Horizon 2020: 8th phase Framework Programme for research
- Duration: 48 months
- Coordinator: Fundacion Cener Ciemat
- Number of Project Participants: 13

Source: http://capture-solar-energy.eu/

Capture: Decoupled Solar Combined Cycle Concept

- Multi-tower decoupled advanced solar combined cycle approach
- Avoids frequent transients and inefficient partial loads
- Maximizing overall efficiency, reliability and dispatchability
- Solar driven gas turbines allow implementation of combined cycle plants to maximize thermal-to-electric energy conversion
- Thermal Energy Storage guarantees dispatchable power generation

Capture: Heliostat Field

- Heliostat Field consits of relatively small flat mirrors
- Goal: US\$ 100 / m² (industry average US\$ 120/m²)
- Reduce costs by:
 - Improved driving mechanism
 - Improved calibration system
 - Improved wind load

Source: http://capture-solar-energy.eu/

Capture: Key Performance Indicators

Description	KPIs defined at <u>STE-EII</u>		How KPI is Addressed
1. Overarching KPI	KPI-1	Reduce PPA (Power Purchase Agreement) needed to make projects happen	Up to 31% LCOE reduction
2. Increase efficiency and	KPI-2	Increased solar-to-electricity conversion efficiency	Average annual efficiency 18-20% (up to 35% increase)
reduce costs	KPI-3	Increase HTF Temperature	> 1000°C at Brayton cycle inlet
	KPI-4	Reduced cost of installed products and O&M for state-of-the-art commercial plants	Up to 35% CAPEX reduction 15-25% OPEX reduction
	KPI-5	Reduce power block costs	See CAPEX analysis
	KPI-6	Reduce collector costs	Up to 30% cost reduction
	KPI-7	Reduce the specific cost of the HTF system	Air is freely available
3. Improve dispatchability	KPI-8 KPI-9	Investment cost of storage Increase efficiency of storage	Higher temperature reduces specific costs
4. Environmental profile	KPI-10	Substantial reduction of water consumption	See Point "Reducing life-cycle environmental impact"

Source: http://capture-solar-energy.eu/

Thank you for attention

Do you have any questions??

Contact: Christiaan Bartels +31 6 8334 0770 / cjbartels@aol.nl